
Corpus-based Error Detector for Computer Scientists

John Blake
University of Aizu

Aizu-wakamatsu, Japan.

jblake@u-aizu.ac.jp

Abstract

This study describes the design and development of a corpus-based error detector for short research articles produced by computer

science majors. This genre-specific error detector provides automated pedagogic feedback on surface-level errors using rule-based

pattern matching. In the corpus phase, a learner corpus of all theses (n = 629) submitted for three academic years was compiled. A held-

out corpus of 50 theses was created for evaluation purposes. The remaining theses were added to the working corpus. Errors in the

working corpus were identified manually and automatically. The first 50 theses were annotated using the UAM Corpus Tool. Errors

were classified into one of five categories (i.e. accuracy, brevity, clarity, objectivity and formality). By the fiftieth thesis, saturation had

been reached, that is the number of new errors discovered had dropped considerably. Annotated errors were extracted into an error bank

(xml file). Each error was assigned values for severity, detectability and frequency. The weighted priority of each error was calculated

from these values. For the remaining theses only new errors were recorded and were added directly into the error bank. In the software

phase, regular expressions were created. Easy-to-understand actionable advice was written that could be displayed on matching the error.

Keywords: learner corpora, error detection, computer science

1. Introduction

1.1 Background

All students at the University of Aizu are required to submit
a thesis in English to fulfil graduation requirements. The
university specializes in computer science and so the thesis
for undergraduates takes the form of a computer science
research article. The format and style of the article
replicates IEEE journals, but the requirements of
originality, significance and substance are less rigorous
than peer-reviewed journals. The thesis serves as a vehicle
for students to learn rather than to contribute to the research
literature.

Undergraduate students face two language-related
problems when writing their thesis: (1) lack of proficiency
in written English, and (2) lack of familiarity with the genre
of formal scientific articles. Students are offered a course
entitled “Thesis writing and presentation” in the final
semester of their senior year. The primary aim of this
course is to enable students to complete their theses.
Students on the course regularly submit small sections of
their thesis to their teacher for comments. Teachers often
note that many of the mistakes that they provide feedback
on are predictable surface-level mistakes.

1.2 Purpose

This study describes the design and development of a
corpus-based error detector for short research articles
produced by computer science majors. The error detector
provides automated pedagogic feedback using rule-based
pattern matching on surface-level errors that were
discovered in a corpus.

1.3 Overview

This paper focusses on the use of corpus linguistics in the
development of this error detector. The following section
introduces how rule-based pattern-matching can be used to
detect errors. Section three describes the design of the
corpus while section four focuses on corpus annotation.
The fifth section describes the corpus analysis stage and the
protocol for prioritizing errors to be incorporated into the

detection tool. Section six gives an overview of the
software development phase. The paper concludes with a
brief discussion of the usability, accuracy and efficacy of
the error detector.

2. Error Detection

2.1 Rule-based pattern matching

There are two main ways of automated error detection
namely probabilistic parsing and rule-based pattern
matching searches. Although probabilistic parsing
algorithms are very effective, rule-based pattern matching
was selected due to its simplicity and ease of deployment.

Patterns permeate language (Kilgarriff, 2005) with certain
words tending to co-occur with other particular words, or
in the frequently quoted words of Firth (1957), “You shall
know a word by the company it keeps” (p.11). This is also
the case for the interlanguage of learners of English.
Novice users of a language tend to make predictable
patterns of mistakes as evidenced by the plethora of
published pedagogic books that aim to help Japanese
learners avoid making such mistakes (Barker, 2003;
Barker, 2008; Ishikawa, 2008; Webb, 2006).

The grammar checker within Microsoft Word and many
other generic grammar checkers identify patterns using
regular expressions. Most checking software that harnesses
rule-based matching automatically identifies mistakes and
suggests a replacement or automatically replaces the
matched item. This autocorrect-type function may increase
the quality of the product, i.e. the writing; but may not help
the writer understand the underlying reasons for the
suggested changes. The result may be that many novice
writers accept all suggestions without trying to assess
whether the results are true or false positives.

Many of these systematic irregularities in the interlanguage
of language learners are easily discovered by regular
expressions. Regular expression searches can be made for
items that conform to a grammatically inaccurate rule and
any items discovered may be identified as errors.

To the best of my knowledge, the first online error detector
for specific purposes was created by Morrall (2000) to
provide student writers at the Hong Kong Polytechnic
University with automated advice on how to write
academic essays. The mistakes that were coded for were
based on typical errors that were submitted in assessments.
This detector provides two types of feedback: errors and
warnings. The term error is used when the developer is
positive that the matched expression is incorrect, while
warning is used when the matched expression may be
incorrect.

2.2 Regular expressions

Regular expressions are similar to wildcard searches, but
are more refined and can find complex combinations of
characters, e.g. letters and words (see Friedl, 2006; Watt,
2005 for comprehensive introductions). Regular
expressions are commonly used by corpus linguists,
especially when cleaning web-crawled corpora. Particular
sequences of characters, such as urls or page numbers, can
easily be removed or replaced.

In this tool, regular expressions are used to match
expressions to help users learn about potential errors in
their draft. The following example shows how this is
achieved. Consider sentence (1) which contains a typical
grammatical error. This sentence could be revised by
replacing to with and as shown in sentence (2). To discover
this automatically, the regular expression in (3) can be used
in a Javascript function. This expression searches for the
words between and to when either one or two wo. matches
the words enclosed in the box in sentence (4). On matching
a script is automatically executed than generates a feedback
message, such as one shown in (5).

(1) There were between 20 to 30.

(2) There were between 20 and 30.

(3) /\bbetween\W+(?:\w+\W+){1,2}?to\b/gi;

(4) There were between 20 to 30.

(5) Use “between X and Y.”

For specific genres with high generic integrity (Bhatia,
1996), it is possible to target user errors more easily and
more accurately. Unsuitable phraseologies can be ruled out.
For example, the expression “There happened” could begin
these sentences:

(6) There happened to be a solution.
(7) There happened a problem in the software.*

Sentence (6) is grammatically accurate, but is highly
unlikely to be found in graduation theses of computer
science majors, while sentence (7) in which the intransitive
verb happen is used transitively commonly occurs in
learner English. The asterisk denotes that this form deviates
from the grammar expected in Anglophone countries, i.e.
the inner circle of Kachru's three-circles-of-English model
of world Englishes (Kachu, 1992).

Creating, checking and debugging arrays (sets) of regular
expressions is time-consuming, and so to maximize cost
performance, prioritizing which errors to target is a
priority. Given the assumption that future cohorts of writers
are likely to make similar mistakes, an analysis of errors
within a corpus can be used to predict which errors are

likely to occur in the writings of future cohorts of scientific
writers.

3. Corpus development

The corpus development phase generates the data needed
for the software development. Although it is possible to
adopt an armchair linguist approach and imagine which
errors learners make, a more scientific, replicable approach
is to base decisions on concrete evidence. In this case, a
corpus of the target genre: graduation theses.

3.1 Corpus specification

A corpus of all theses submitted over three-year period was
selected. With approximately two hundred students
graduating each year, this would provide a corpus of
approximately 600 theses. Each thesis is expected to be
between four and six pages assuming that the theses
comply with university guidelines.

3.2 Corpus collection

In the corpus collection phase, a learner corpus of all theses
(n = 629) submitted for three academic years (AY 2014 to
AY 2016) was compiled. A held-out corpus of 50 theses
was created for evaluation purposes. The remaining theses
(n = 579) were added to the working corpus. The next phase
is to annotate the corpus, pinpointing and classifying the
errors.

4. Corpus annotation

4.1 Manual annotation

Errors in the working corpus were identified manually by
skimming and scanning the texts. The corpus is far larger
than can be annotated intensively by one researcher within
the timeframe set to complete the annotation stage (four
months).

4.2 Error taxonomy

Errors were classified into one of five categories, mirroring
the content of the University of Aizu in-house thesis
writing course. Table 1 is used in the thesis writing course
to show novice writers the key criteria to evaluate the
language used in their graduation theses. These same
criteria are used for proofreading purposes, enabling
learners to systematically review their writing focussing on
one criterion at a time.

Type Description

Accuracy Factual and language errors

Brevity Using too many words

Clarity Using vague or ambiguous terms

Objectivity Using terms that appear subjective

Formality Using abbreviations, contractions,

and informal terms
Table 1 Key criteria for research writing

The five categories are designed as pedagogic categories
that can help learners edit their language.

These five categories were taken from an error
classification scheme created for an earlier study of a
corpus of 200 draft research articles submitted for internal
review by graduate students at the Japan Advanced
Institute of Science and Technology (Blake, 2016). In that

study, template analysis (King, 2004) of the pedagogic
literature on scientific writing was conducted which
uncovered three major criteria: accuracy, brevity and
clarity; and two minor criteria: objectivity and formality.

4.3 Five error types

Accuracy is important, but actual accuracy is paramount.
Thesis supervisors who grade theses may overlook
language errors, but are seldom tolerant of subject-specific
factual errors. However, language errors can be intrusive.
at times affecting subject-specific meanings.

Brevity is used to refer to the removal of redundant and
repetitive expressions. There is a trade-off between brevity
and clarity. Audience awareness is central to achieving the
optimum balance so that the intended message can be
conveyed in the minimum number of words. Readers rely
on co-text, context and world knowledge to decode
messages.

Clarity of expression focuses on precision and removal of
ambiguous and vague expressions. Ambiguity can be
further divided into lexical, structural or referential, and
any of these may lead to the unintended presence of garden-
path sentences.

Objectivity is used to refer to a reduction in appeared
subjectivity. Research articles in computer science focus on
the process and products of research, and not on people and
feelings.

Formality is a nebulous category that impinges on multiple
other categories. Formality can be considered an aspect of
style or register. Gilquin and Paquot (2008) note that the
academic writing of learners of English tends to be rather
informal. The following example shows how formality and
objectivity are entwined.

(1) They developed an online tool.
(2) An online tool was developed.
(3) an online tool's development
(4) Development of an online tool

In sentence (2) the removal of the person deixis (doer of the
action) and use of passive voice increases the formality and
(arguably) objectivity compared to sentence (1). The
nominalization or use of grammatical metaphor (Halliday,
1985) reduces the time deixis, creating a less context-
dependent abstraction in sentence (3). However, the use of
an apostrophe appears rather marked since of tends to be
used with inanimate nouns. The unmarked formal version
is shown in sentence (4).

4.4 Annotation tool

The first batch of 50 theses was annotated using the UAM
Corpus Tool (O’Donnell, 2008). This tool was selected
based on the ease of creating a tailor-made annotation
scheme. The graphical scheme editor was used to create a
tailor-made scheme. The annotations were completed at a
finer level of granularity using the error classification
scheme shown in Figure 1.

4.5 Saturation

By the fiftieth thesis, saturation had been reached, that is
the number of new errors discovered had dropped
considerably. Error frequency appears to follow Zipf's Law
(Cancho and Solé, 2001). The cost-benefit for further
annotations was not judged as being viable, and so no more
detailed annotations were completed. However,
exploratory regular expression searches were conducted to
identify errors in the remaining theses in the working
corpus and assess the frequency of the types of errors
identified.

5. Corpus analysis

Annotated errors were extracted into an error bank. Using
a failure mode effects analysis framework (Stamatis, 2003),
each error was assigned values for severity, detectability
and frequency. Intrusive errors affecting meaning were
classified as severe. Detectability was estimated based on
the perceived difficulty of creating a regular expression to
match the error. Frequency was counted or estimated by
investigating the occurance of the error in the whole
working corpus. The weighted priority of each error was
calculated from these values with severe, detectable,
frequent errors receiving the hightest weighting.

6. Software development

This section outlines some of the steps in the software
development phase that are of more interest to corpus
linguists.

6.1 Creation of regular expressions

Regular expressions were created to detect the errors
starting with those assigned the highest weighted priority.

6.2 Feedback messages

Easy-to-understand actionable advice was written that
could be displayed on matching the error. These messages
were written in English, but given that most users will be
Japanese speakers, the option to select the feedback
language may be added in a later version.

Figure 1 Error classification scheme

6.3 Interface development

A user-friendly interface was created and tested. This
version of the interface uses toggle buttons, and when the
cursor hovers over a button, an explanation of the purpose
of the button appears as shown in Figure 2. The border of
the toggle buttons are coloured using the same scheme as
the inline feedback. Users can select to display one or more
types of error simultaneously. Users with numerous errors
are advised to focus on each error type, in turn.

7. Discussion

7.1 Summary

The Error Detector reduces the need for teachers to provide
feedback on commonly-occurring surface-level errors. The
error detector finds numerous errors in each writing activity
conducted in the thesis writing course. Students are able to
not only identify their own errors using the tool, but receive
actionable advice on how to resolve the errors, and where
appropriate, brief explanations are given to help learners
avoid making the same type of error again.

Although the Error Detector is still under development, it
is fully functional and able to discover numerous errors in
each draft thesis submitted to date. This helps both the
students and their teachers. Students are able to get instant
feedback on potential errors in their thesis, and teachers no
longer feel obliged to check for the types of mistakes that
can be automatically identified.

7.2 Preliminary evaluation

7.2.1 Usability

Usability studies were conducted with small cohorts of
undergraduate students. Numerous incremental changes
were made of the development of the interface based on
comments received.

7.2.2 Accuracy

The accuracy of each regular expression was tested to
minimize the number of false positive results and maximize
the number of true positive results. A formal evaluation of
the accuracy of the Error Detector will be conducted when
all the regular expressions have been added to the code.

7.2.3 Efficacy

The Error Detector is able to identify the most frequent
genre-specific errors. Figure 3 shows the output when a
student checked a draft of an introductory paragraph. The
vast majority of students in the University of Aizu who use
the Error Detector find many more mistakes in the accuracy
category.

7.3 Further work

There are four features that are currently under
development. First, more regular expressions and feedback
messages are being created in order of weighted priority for
the errors extracted from the corpus. Second, a bank of
short screencast PowerPoint explanation videos recorded in
Japanese have been created. A hyperlink will be added to
the feedback message to provide users with the choice to
receive a more detailed explanation. Third, the
disambiguation of some expressions is either impossible or
too time-consuming without having access to the part of
speech of the words. A part-of-speech (POS) tagger, the nlp
compromise Javascript library, (Kelly, 2016) is currently
under trial. This tagging enables finer tuning, or
disambiguation, of error detection since combinations of
both words and POS tags can be matched. Fourth, an
improved user interface based on the Grammarly interface
that is designed to enhance the user experience is
underdevelopment.

Figure 2 Interface for the Error Detector

Figure 3 Screenshot of automated output

8. References

Barker, D. (2003). Eigo to Nakanaori Dekiru Hon [The

Book for Becoming Friends Again with English].

Tokyo: Aruku.

Barker, D. (2008). An A - Z of Common English Errors for

Japanese Learners (Japanese version). Tokyo: BTB

Press.

Bhatia, V. K. (1996). Methodological issues in genre

analysis. Hermes, 16, 39-60.

Blake, J. (2016) Pedagogic application of regular

expressions: Corpus-based online writing tool. Paper

presented at the 2nd BAAL Corpus linguistics SIG

Event, 10 December 2016. Coventry University,

England.

Ferrer i Cancho, R., & Solé, R. V. (2001). Two Regimes in

the Frequency of Words and the Origins of Complex

Lexicons: Zipf’s Law Revisited∗. Journal of

Quantitative Linguistics, 8(3), 165-173.

Firth, J.R. (1957). A synopsis of linguistic theory 1930-55.

Reprinted in E.R. Palmer (Ed.), (1968), Selected Papers

of J.R. Firth 1952-59. London: Longman.

Friedl, J. E. (2006). Mastering Regular Expressions.

Sebastopol, CA: O'Reilly Media.

Gilquin, G., & Paquot, M. (2008). Too chatty: Learner

academic writing and register variation. English Text

Construction, 1 (1), 41-61. Available online:

http://dx.doi.org/10.1075/etc.1.1.05gil

Halliday, M. A. K. (1985). An Introduction to Functional

Grammar. London: Arnold.

Heylighen, F. & Dewaele, J.-M. (1999). Formality of

language: definition, measurement and behavioral

determinants. Internal Report, Center Leo Apostel,

Free University of Brussels .

Hunston, S. (2002). Corpora in Applied Linguistics.

Cambridge : Cambridge University Press.
Ishikawa, S. (2008). Eigo koupasu to eigo kyouiku: deeta

toshiteno tekusuto. [Engish corpus and language
education: Text as data]. Tokyo: Taishukanshoten.

Kachru, B. (1992). The Other Tongue: English across
cultures. University of Illinois Press.

Kelley, S. (2016). Language as an Interface. Presentation at
"goto;" conference in Chicago (24-25 May 2016),
Available online:: https://gotocon.com/dl/goto-
chicago2016/slides/SpencerKelley_LanguageAsAnInt
erface.pdf.

Kilgarriff, A. (2005). Language is never ever ever random.
Corpus Linguistics and Linguistic Theory 1, 263-276.

King, N. (2004). Using templates in the thematic analysis
of text. In C. Cassell & G. Symon (Eds.), Essential
guide to qualitative methods in organizational research
(pp. 256–270). London: Sage. Available online:
http://dx.doi.org/10.4135/9781446280119.n21

Leech, G. (2005). Adding Linguistic Annotation. In M.
Wynne, (Ed), Developing Linguistic Corpora: A Guide
to Good Practice (pp.17–29). Oxford: Oxbrow Books.

Morrall, A. (2000). Common error detector [online tool]
Available online:
http://www2.elc.polyu.edu.hk/cill/errordetector.htm.

McEnery, T. & Wilson, A. (2001). Corpus Linguistics.
Edinburgh: Edinburgh University Press.

O’Donnell, M. (2008, April). The UAM CorpusTool:
Software for corpus annotation and exploration.

In Proceedings of the XXVI Congreso de AESLA (pp. 3-
5). Almeria Spain.

Stamatis, D. H. (2003). Failure Mode and Efect analysis:
FMEA from Theory to Execution. ASQ Quality Press.

Swales, J. M. (2004). Research Genres: Explorations and
Applications. Cambridge: Cambridge University Press.

Watt, A. (2005). Beginning Regular
Expressions.Indianapolis, IN: Wiley Publishing.

Webb, J. H. M. (2006). 151 Common Mistakes of Japanese
Students of English. Tokyo: The Japan Times.

http://dx.doi.org/10.1075/etc.1.1.05gil
http://dx.doi.org/10.4135/9781446280119.n21

