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Abstract
Automatic speech recognition is hindered by the linguistic dif-
ferences occurring in accented speech. This paper advances a
classification method for accented speech using a CNN-based
model trained and tested on English with Germanic, Romance
and Slavic accents. The input feature set was examined to find
the optimal combination of time-frequency and energy charac-
teristics of speech fed into the machine learning model. We
also tuned model hyperparameters and the dimensionality of in-
put features. We argue that mel-scale amplitude spectrograms
on a liner scale appear more powerful in accent classification
tasks compared to conventional feature sets based on MFCCs
and raw spectrograms. Our models used only sparse data from
the Speech Accent Archive, yet produced state-of-the-art classi-
fication results for English with Germanic, Romance and Slavic
accents. The accuracy of our models trained on linear scale
amplitude mel-spectrograms ranged from 0.964 to 0.987, out-
performing existing models classifying accents using the same
dataset.
Index Terms: Automatic accent identification, Convolutional
neural networks (CNN), Mel-frequency cepstral coefficients
(MFCC), Amplitude mel-spectrogram.

1. Introduction
Features associated with speakers, such as geographic region,
gender, age, social class, and mother tongue, combine to cre-
ate distinctive accents [1]. The compounded effect of phone-
mic and prosodic contact between L1 and L2 phonological sys-
tems may be perceived as foreign accents [2, 3]. Conven-
tional acoustic language models adapted to fit the standard lan-
guage corpora fail to fulfill the recognition requirements when
applied to accented speech [3, 4]. Adding more pronuncia-
tion samples to the training dataset for speaker-independent
speech recognition scheme is inappropriate as it increases the
processing time for audio recordings and creates additional
noise, degrading the performance [5]. In contrast, accent de-
tection improves the robustness of automatic speech recogni-
tion systems (ASR), since it helps to overcome this unwanted
variability [6, 7, 1, 8, 9, 10, 11, 12]. Being a sub-task
of speech and language recognition, in terms of classifica-
tion models, accent detection is based on the same machine
learning architectures [13, 14, 5, 15, 10, 1, 16], e.g. CNN
[17, 1, 18, 14, 13, 19], FFNN [10], HMM [20], KNN [21], Lo-
gistic Regression [15, 20], GMM [22, 23], LSTM and bLSTM
[3, 8], Random Forest, SVM [24, 25, 20, 23, 21]. Accent clas-
sification accuracy depends upon the input feature set. The best
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results to date have been achieved using mel-frequency cepstral
coefficients (MFCC), while classification was also successful
using other types of input features, such as: spectrogram (SG),
chromagram (CG), spectral centroid (SC), and spectral rolloff
(SR), mel-weighted single filtered frequency (SFF) spectrogram
[1, 25]. Previous works addressing speech accent identification
that inspired and shaped our current research either in terms of
classification model, audio descriptors or training dataset are
summarized in Table 1.

This study investigated whether using time-frequency and
energy features could improve the accuracy when used jointly
with MFCC as input features in the task of automatic accent de-
tection. We demonstrate that the greatest contribution to recog-
nition has been made by the presence of stable time-frequency
patterns of energy distribution, represented by amplitude mel-
spectrograms on a linear scale, which alone could be fed into
the classification model as mel-spectrogram captures all of the
relevant pronunciation-specific details [28]. The accuracy of
our model ranged from 0.964 to 0.987 when working with 9
classes of accented speech in English. A similar result using
mel-spectrogram with CNN model accent was achieved when
discriminating between 5 accent classes of spoken Kashmiri
showed an accuracy of 0.9866 [26].

2. Feature Extraction
A common approach to speech signal processing is to use short-
term analysis, under the assumption that signal characteristics
within a short-term frame remain unchanged. Speech utterances
are compared to feature vectors, presumably differing in their
distribution with different L1s. For speech signal analysis, the
frame length is near 10–30 ms, with an overlap between frames
approximately equal to half their length [10].

2.1. Audio descriptors

The six additional features used to extend the MFCCs are de-
scribed here. Spectral centroid (SC) indicates the frequency at
which the energy of the spectrum is concentrated, or where the
center of mass of the sound is located. Spectral roll-off (SR) is
a measure of the asymmetry of the spectral shape of the signal.
SR represents the frequency below which a given percentage
(85%) of the total energy of the spectrum lies. This value is
used to determine vocalized sounds in speech since unvoiced
sounds have a large proportion of the energy contained in the
high frequency range of the spectrum. Chromagram, which is
usually a 12-dimensional feature vector, represents the amount
of energy for each of the signal’s height classes (C, C#, D, D#,
E, etc.). Zero Crossing (ZCR) represents the number of signal



Table 1: Related works
Paper, year Feature set Model Classes Accents Dataset
[26], 2022 Mel spectrogram CNN 5 5 Kashmiri accents Custom
[18], 2021 SG CNN (LeNet) 5 DU, FR, JA, NS, PO IViE, Cambridge English Corpus
[19], 2021 SG

CNN
5 AR, FR, GE, IN, NS

SAA[1], 2020 MFCC, SG, CG, SC, SR 5 AR, FR, NS, SP, ZH
3 AR, NS, ZH

[13], 2020 MFCC CNN with attention
2 IN, NS

Custom
4 IN
9 IN, NS

[15], 2020 MFCC Logistic Regression 3 HA, IG, YO
[20], 2019 MFCC LSTM, RF 4 NS, SP
[10], 2017 MFCC, LPCC FFNN 6 GA, IN, IT, JA, KO, NS Wildcat
[14], 2017 SG CNN (AlexNet) 3 NS, SP SAA
[27], 2017 MFCC GMM 3 ML Custom[16], 2012 Mel-spectrogram statistics FF-MLP 3 IN, MS, ZH
[5], 2005 2nd and 3rd formants GMM 2 IN, NS Custom (SAA subset)

sign changes within a segment. ZCR can be helpful in describ-
ing the noisiness of the signal. For unvoiced speech, the ZCR
characteristic takes on higher values due to unvoiced speech be-
ing associated with turbulence. Root mean square (RMS) rep-
resents the average signal strength. Fundamental frequency
(F0) is the lowest frequency at which a person’s vocal cords vi-
brate when making voiced sounds. F0 makes a significant con-
tribution to the perception of foreign accents [6], which is es-
pecially noticeable for Germanic and Romance languages [29].
Estimation of the fundamental frequency of the signal is carried
out using the autocorrelation-based YIN algorithm [30]. The
first input feature set includes 30 audio descriptors, namely: 13
MFCCs, 12 chroma coefficients, SC, SR, ZCR, RMS and F0.

2.2. Amplitude mel-spectrograms

An alternative input feature set was formed by amplitude mel-
spectrograms on a linear scale. The audio signal frequencies
f were converted to mel-spectrograms M(f) as follows:

M(f) = 2595 log10(1 +
f

700
) (1)

Linear scale amplitude mel-spectrograms were chosen be-
cause they performed better at classifying accents than loga-
rithmic amplitude mel-spectrograms, power mel-spectrograms,
and SFF mel-spectrograms. By experimenting with mel-
spectrograms with 32, 64 and 128 bands as input features, we
found that the optimal balance between learning rate and recog-
nition accuracy can be achieved using mel-spectrograms with
64 bands (see Section 3 for details).

3. Experiments
3.1. Experiment set-up

We used a subset of 9 groups from the Speech Accent
Archive [31]. These groups are labelled according to L1 as
Germanic languages (English (EN), German (GE), Dutch (DU),
Swedish (SW)), Romance languages (Spanish (SP), Italian (IT),
French (FR)) and Slavic languages (Polish (PO), Russian (RU)).
At the time of experiments, the number of recordings by group
were as follows: {EN: 650, GE: 44, DU: 53, SW: 23, SP: 233,
IT: 39, FR: 85, PO: 39, RU: 81}. To compensate for the un-
equal distribution, we used the first 80 samples from the larger
groups.

The classification model for accent detection is built on
CNN used in [1]. The output value is the probability distri-

bution vector which attributes the speech sample to a specific
accent class. The model consists of two convolutional layers
with ReLU activation function and two-dimensional filters. The
first and second convolutional layers contain 32 and 64 blocks,
respectively. After each convolutional layer batch normaliza-
tion and pooling are applied. The flatten layer is followed by
two dense layers of direct propagation. We use 128 neurons
and ReLU activation function in the first dense layer. We set the
number of neurons equal to the number of accents and use the
softmax activation function in the second layer. The input of
the model is a feature matrix extracted from audio signals. For
the basic implementation of the model, we chose convolutional
filters with size (3, 3) and pooling layers (2, 2) with a stride
of 2 following [1]. To prevent overfitting, we use the dropout
method with a variable probability of any neuron turning to zero
– depending on the type of input data, a value from 10 to 50%
is used. We used categorical cross-entropy as a loss function
during training. Learning loss function is minimized using the
adaptive moment estimation (Adam) algorithm, where the con-
stant learning rate coefficient is 0.001, and the parameters β1

and β2 are 0.9 and 0.999, respectively.

3.2. Experiments on model adjustment

3.2.1. Audio processing

Audio recordings with a sampling rate of 22050 Hz were split
into multiple consecutive frames of 25 ms, each with an over-
lap of 10 ms. To determine whether to keep or remove the si-
lence fragments (pauses) from the input to improve recognition
quality, we performed the experiments for both situations while
applying the set of characteristics including 13 MFCCs and fun-
damental frequency F0.

Keeping the fragments of silence resulted in higher accu-
racy and so audio files processed in all the subsequent accent
classification experiments are used in their original form, i.e.,
with all the pauses preserved.

3.2.2. Data augmentation, regularization and filter size

The optimal maximum percentage of horizontal shift found
experimentally during data augmentation is 20%. Horizontal
shifts from 5 to 30% were tested for the Italic group.

Following the recommendations in [1], we experimented
with the 2D filter configurations for 30 characteristics of the
MFCC-based feature set (Section 2.1). Thus, we used two con-
figurations (3,3) (3,3) and (5,5) (3,3) for kernel size and pool



size in the convolutional and pooling layers respectively. The
(3,3) (3,3) filters performed better than (3,3) (2,2).

For amplitude mel-spectrograms ona linear scale (Section
2.2) four 2D filter configurations were tried for classification
among the 3 Romance accents {FR, IT, SP}. The length of the
input feature matrices used to represent the input data was 100.
The learning process was completed when the change in the
recognition accuracy did not exceed 1% within 10 epochs. The
highest recognition accuracy of 99.04% with a relatively short
model training time were achieved when using filters of size (3,
3) in both the convolutional and pooling layers. Thus, filters of
size (3, 3) in hidden layers are the most universal (Table 2).

Table 2: Filter sizes for amplitude mel-spectrograms
French, Italian, Spanish (Italic group)
Kernel
size

Pool
size

Learning
Time
(mm:ss)

Accuracy Error

(3, 3) (2, 2) 41:06 0.9889 0.0614
(3, 3) (3, 3) 20:01 0.9904 0.0261
(5, 5) (3, 3) 17:57 0.9852 0.0564
(7, 7) (3, 3) 26:14 0.9867 0.0468

3.2.3. Input matrix dimension

When working with speech signals, it is necessary to consider
the patterns of change in the characteristics describing these sig-
nals over time. Thus, it is essential to consider the sequences
of vectors of features or input matrices, not vectors at discrete
points in time. Dividing the input features into larger chunks al-
lows for longer speech patterns that are more likely to be accent-
dependent. This could be performed, however, at the expense
of training set decrease and longer computation time. Shorter
fragments, on the contrary, allow for larger training sets; but
should input matrices be too small, it may be impossible to cap-
ture information about the accent. To find the optimal size of the
input feature, matrices feature vectors of MFCC were grouped
into blocks containing 30 to 500 vectors per block. The train-
ing stops when the change in accuracy is less than 0.5% for an
interval of 20 epochs or when 300 epochs is reached among
five accents and 170 epochs in other cases. The probability of a
neuron going to zero when using the thinning method is 50%.

As an effect of modifying the dimension of input features
and the maximum percentage of horizontal image shift during
data augmentation, classification accuracy among five classes
increases by about 7% compared to [1] (60.95% and 53.92%)
for recognition among five accents.

We used a dropout of 0.25, the size of the filters in the
convolution layers is (5, 5), and (3, 3) in the pooling layers.
The training stops when the recognition accuracy ceased to
change by at least 1% for ten epochs. Mel-spectrograms, con-
sisting of 64 frequency bands, proved to be the most effective
and were chosen as input characteristics for recognition. Al-
though the use of 128-band mel-spectrograms can slightly in-
crease the recognition accuracy, training time increases sever-
alfold. Contrariwise, using mel-spectrograms consisting of 32
mel-frequency bands (being naturally less computationally ex-
pensive) leads to a significant increase of error while testing the
classifier. The optimal length of the input feature matrices in
the case of using amplitude mel-spectrograms on a linear scale
is 75. Thus, this value is used when classifying using amplitude
mel-spectrograms.

Table 3: Classification results using different types of input fea-
tures for Slavic and Italic accents

Features Test Accuracy Test Loss
Russian, Polish (Slavic group)
Threshold Accuracy – 0.72
MFCC 0.84 0.37
MFCC + F0 0.83 0.4
MFCC + spectral centroid 0.85 0.39
MFCC + spectral decay 0.84 0.4
MFCC + chromagram 0.79 0.44
MFCC + ZCR 0.84 0.38
MFCC + RMS 0.83 0.41
All 0.81 0.41
French, Italian, Spanish (Italic group)
Threshold Accuracy – 0.43
MFCC 0.75 0.6
MFCC + F0 0.69 0.71
MFCC + spectral centroid 0.67 0.73
MFCC + spectral decay 0.68 0.72
MFCC + chromagram 0.63 0.84
MFCC + ZCR 0.71 0.68
MFCC + RMS 0.7 0.7
All 0.66 0.8

3.3. Experiments on accent detection feature sets

3.3.1. MFCC and other audio descriptors

We investigated which characteristics for MFCC extension
would positively impact classification accuracy while maintain-
ing the basic filter sizes in the hidden layers of the classifier.
The training stops when either training accuracy of 90% or
120 epochs is reached for all accent sets except for {EN, RU,
SP, SW}. The training process continues until 350 epochs is
reached for the cases of {EN, RU, SP, SW}.

Recognition accuracy of our model outperformed pure
MFCC in half of the cases with filter sizes (3, 3) in convolu-
tional layers and (2, 2) in pooling layers (Table 3). In the case
of the accent group {EN, GE, IT, PO}, adding the fundamental
frequency to the MFCC helped to increase the recognition ac-
curacy by about 3%. For the set {EN, RU, SP, SW}, the most
effective selection was to use all types of additional character-
istics: the increase in classification accuracy also turned out to
be about 3% compared to the usage of pure MFCC.

3.3.2. Mel-spectrograms

Linear scale mel-amplitude spectrograms extracted from audio
signals were also tried as input to the classifier model under
the settings for filter size, input matrices dimensions and learn-
ing proved to be optimal in previous sections. The length of
the input feature matrices was 75 elements. The number of
epochs was limited to 60, while the preliminary termination of
the learning process was set when the change in recognition ac-
curacy stopped by at least 1% within ten epochs. Regularization
was applied to the training set or to test set, but not for both at a
time. Its values ranged from 10 to 25%.

4. Discussion
By the end of the training, the model is able to achieve similar
accuracy and loss values for the training and test data. For a
smaller number of epochs compared to previous experiments, it



Figure 1: Training curves of the proposed model for 9 classes
of accents (DU EN FR GE IT PO RU SP SW).

Table 4: Accuracy and loss for trained classification models
Accents Accuracy Loss
PO RU 0.987 0.039

FR IT SP 0.986 0.052
DU EN GE SW 0.982 0.075
EN RU SP SW 0.988 0.042
EN GE IT PO 0.985 0.053
DU EN FR RU 0.984 0.039

EN FR GE RU SP 0.978 0.071
DU EN FR GE RU SP 0.964 0.097

DU EN FR GE IT PO RU SP SW 0.986 0.044
Average 0.982 0.056

was possible to achieve a much smaller error and greater accu-
racy, which means that using amplitude mel-spectrograms on a
linear scale allows the model to place broad boundaries between
classes (Table 4). Linear scale amplitude mel-spectrograms
gave much better accuracy and loss results than using MFCC
alone or combined with additional features. The average num-
ber of training epochs was 46, with an average duration of 37.18
sec. It took 52 epochs with an average duration of 64.09 sec for
the model to learn to classify the 9 accents (Fig. 1). Table 5
presents the results obtained during testing of the model for the
same number of classes against the previously reviewed publi-
cations.

Intonation makes a significant contribution to the recog-
nition of foreign accents. Based on the fact that the F0 con-
tour in most experiments did not improve the classification re-
sults, we can conclude that intonation features are subsumed
within MFCC. When extracting MFCC, information about F0
is partially preserved due to the close distance between the low-
frequency channels of the mel-filters [32].

Amplitude mel-spectrograms on a linear scale showed high
efficiency in recognizing foreign accents in English speech.
However, the results turned out to be slightly lower compared
to [13]. This may be explained by the variation in recording
equipment using within datasets. All entries in [13] were cre-
ated with the same recording equipment while this was not the
case in the Speech Accent Archive dataset.

Compared to other solutions based on the Speech Accent
Archive dataset – [14, 1, 19] and with [5], the implemented
model achieved better recognition accuracy with no additional
computational overhead by tuning hyperparameters and dimen-

Table 5: Accuracy of existing solutions and the results obtained

Source

Classifier Number
of
classes

Accuracy
of existing
solution

Accuracy
of proposed
model

[26] CNN 5 0.987 0.978
[18] CNN

(LeNet)
5 0.923 0.978

[19]
CNN

5 0.902 0.978

[1] 3 0.703 0.986
5 0.539 0.978

[14] CNN
(AlexNet)

3 0.61 0.986

[13] CNN with
attention

2 1.0 0.987
4 0.99 0.984
9 0.995 0.986

[15] Logistic
Regression 3 0.82 0.986

[10] FFNN 6 0.914 0.964
[16] FF-MLP 3 0.99 0.986
[27] GMM 3 0.89 0.986
[5] 2 0.862 0.987
[20] LSTM, RF 5 0.947 0.978

sionality of input features, as well as selecting amplitude mel-
spectrograms on a linear scale as input features. The better
recognition quality compared to [5] can be explained, among
other things, by the fact that the authors of [5] removed silence
fragments from audio recordings before extracting characteris-
tics. During this research, we found that pauses in speech have
a positive effect on the ability to detect accent.

Amplitude mel-spectrograms on a linear scale, carrying in-
formation about the energy of the audio signal, showed good
results when classifying up to 9 accents. In more than half of
the cases, when comparing the obtained results with those de-
scribed in the literature we reviewed, it was possible to achieve
higher recognition accuracy results, namely 98.6%. When using
amplitude mel-spectrograms as input data, our proposed model
demonstrates equally high accuracy and completeness of clas-
sification both on average and separately for each class, despite
the sparsity of the dataset used.

Thus, the amplitude mel-spectrograms on a linear scale
showed effectiveness in determining the speech accent in a for-
eign language using a CNN-based classifier. Further studies of
this approach may expand the number of recognition classes,
using an intermediate classifier to determine the L1 language
group of the speaker before classifying a particular accent and
using a dataset with a variety of spoken content.

Though the techniques and features used are known in the
speech processing domain, exhaustive experiments involving
their combination and application to a specific problem of ac-
cent recognition have not been reported so far. Due to space
limitations, we will prepare a separate publication for in-depth
description of the classification experiments conducted for dif-
ferent sets of languages using a variety of applied features along
with an approach to selecting the optimal parameters for CNN
filters.
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